
Procedural Content Generation in Relinquish
Modern Artificial Intelligence (Autumn 2020): KGMOARI1KU

14/12-2020

Francesco Frassineti
fraf@itu.dk

Magnus Rubin Peterson
magp@itu.dk

Ting-Yu Kuo
tiku@itu.dk

Abstract—Procedural Content Generation (PCG) is a vital
part of any roguelike game such as Relinquish. The first
implementation of the Relinquish prototype did not include
PCG. Therefore, in this paper we design, implement, and
evaluate two agent-based PCG algorithms to generate the floor
plan of the levels in Relinquish. We evaluate these algorithms
according to several properties.

1. Introduction

Our project consists of introducing procedural content
generation (PCG) to Relinquish, a roguelike game that
Francesco’s group developed with the Unity Engine during
the second semester of the MSc. in Games at IT University
of Copenhagen. As it belongs to the roguelike genre, re-
playability is expected to be a key aspect of the design [1].
Due to time constraints, the game was submitted without
any implementation of procedural content generation and
each level was completely hand-crafted by the designers.
The goal of our work is to improve the replayability of
the game by designing, implementing, and evaluating differ-
ent procedural content generation solutions to generate the
floors of the game using the rooms that were hand-crafted
by the designers as its building blocks.

2. Background

2.1. Procedural Content Generation

Procedural Content Generation, often abbreviated as
PCG, refers to the algorithm creation of game contents
with limited or indirect user input [2]. As the demand for
game contents keep rising and the developmental period
of games are shortening, the importance of PCG becomes
more significant. One of the benefit of generating content
algorithmically is that it reduces the workload of artists and
game designers. PCG allows games to be developed faster,
cheaper, and with more diversity. Besides generating game
content completely by algorithms, mixed-initiative methods
can help designers with their tasks, empowering small teams
with limited resources. PCG also plays an essential role in
roguelike games. In fact, the whole genre of game would
not exist without PCG. An ideal PCG algorithm should have
the following properties:

1) Speed: the speed of content generation.
2) Reliability: the generated contents should be above

certain quality and should not violate the gameplay
experience.

3) Controllability: the content generator is easy to
control by a human user.

4) Expressivity and diversity: the content generator
is able to generate a diverse variety of content.

5) Creativity and believability: in most cases, the
generated contents needs to look like they have
been designed by human designers.

We evaluate our content generators based on the properties
listed above.

2.2. Anatomy of PCG

Although there are a large variety of games, a previous
review article proposed six main classes of game contents
that could be generated by PCG algorithms [3]. The classes
are not only limited to contents inside the game but also
derived contents designed to immerse players. The classes
were structured as a pyramid, in which classes of content
closer to the bottom could be the foundation of the classes
closer to the top. We listed the pyramid bottom-up here:

1) Game bits: elementary units, textures, sound, veg-
etation, buildings. fire, water, stone, etc.

2) Game space: the environments: indoor maps, out-
door maps, etc.

3) Game systems: biological ecosystems, road net-
works, NPC behaviors, etc.

4) Game scenarios: puzzles, story, levels, etc.
5) Game design: rules, player goals, system design,

world design
6) Derived content: side-products of the game, such

as game news, broadcast, etc.

In the current article, we focus on the level of game
space and search for a suitable algorithm for game map
generation.

2.3. Evaluation of PCG

Evaluating a content generator is important yet complex.
Establishing good standards of a good content generator



highly depends on the purpose and settings of the game
[2]. Here, we listed a top-down and a bottom-up evaluation
method, which are also the methods we considered applying
to our generator:

2.3.1. Expressive Range (top-down). Expressive range
refers to the space of potential levels that the generator
is able to create [4]. Often, a large amount of content is
generated, evaluated according the metrics, and then plotted
in a heatmap. Heatmaps easily help to identify biases in
the generator. Comparisons of heatmaps also show how
different sets of input parameters affect the controllability
of the generator.
The expressive range of a generator could be represented as
an N-dimensional space, where each dimension is a metric
defined for evaluation. The metrics for a generator are vary
based on the game domain. For example, previous research
on a 2D platforming game Infinite Mario Bros. utilized
metrics as ”linearity” and ”leniency”, but the same metrics
might not suit other games (e.g. Relinquish).

2.3.2. Self-report and questionnaire (bottom-up). One
of the possible approaches to evaluate game content is to
gather self-report from players. Play testers can be either a
small but dedicate group, or regular users recruited from
crowdsourcing platforms. One of the advantages of self-
report is directness. Play testers could give direct feedback
on all aspects of the game. Questionnaire, on the other hand,
can be considered as a simplified way of self-reporting with
a ranking structure.
In the current project, we collected qualitative feedback and
results from Game Experience Questionnaire (GEQ) [5],
which is a commonly used tools when it comes to game
evaluation.

3. Game Mechanics

3.1. Overview of the Game - Relinquish

Relinquish is a 2D roguelike with twin-stick shooter
gameplay [1]. A mysterious elevator is your only path to
the surface. To use the elevator, the weights carried by the
player must not exceed a certain value per floor. The core
gameplay of Relinquish centres around an inverse progres-
sion system, where the player is forced to give up various
perks - represented as weights - to progress through the
levels of the game (see Fig. 1). To give up perks, the player
must explore the level to find the various chests scattered
throughout. Once the player has given up enough perks,
they must return to the elevator which takes them to the
next level. The primary goal of the game is to complete the
final level, which can only be reached once the player has
given up all perks.

The game implements permanent death. Various enemies
and environmental obstacles block the player’s path, some
of which are only surmountable if the player has not yet
given up certain perks. The primary example of this is the
”pits” obstacles that the player cannot traverse unless they
possess a specific perk (see Fig. 2).

Figure 1. Perk Graph in Relinquish. When the game starts, the player
possesses all the available perks in the game. In the figure, some perks
are already dropped.

Figure 2. A room with pits. Pits are the main environmental obstacle in
Relinquish.

3.2. Layout of the Floors

Each floor in Relinquish is made of a set of rooms that
are placed on a grid and are directly connected to each other.
Each room is individually saved as a prefab. A room prefab
contains information about the placement of enemies, the
tilemap, and the possible exits. Level designers can place
random enemies inside a room by placing appropriate game
objects with a script that converts them into actual enemies
at runtime by randomly selecting an enemy from a pool of
pre-defined prefabs.

There are different types of rooms: common, elevator,
boss, treasure, and fairy rooms. The last four rooms will
be referred as special rooms in this article. As a design
requirement, each floor is made of a total of 15 rooms and
there needs to be exactly one of each special room. Special
rooms should be distanced from each other. Also, except for
the elevator room, they should ideally be connected to only
one other room. A summary of these requirements can be
seen in Fig. 3.

2



Figure 3. Example of an ideal floor layout in Relinquish. On the map, the
boss room is in red, the treasure room is in yellow, and the fairy room is
in green.

4. Methods

In this section, we describe our implementation of two
Agent-based techniques [2] for generating floor layouts in
Relinquish. The first algorithm performs a multi-agent 2D
random walk. The second algorithm is an adaptation of
Prim’s maze generation [6] that was inspired and adapted
from the procedural content generation in Eldritch [7]. The
two algorithms both perform the following three high-level
steps until a valid floor is generated or the max amount of
attempts is reached:

1) A floor plan that specifies the positions and the con-
nections of the placed rooms is generated. For each
room position, some requirements are specified.

2) For each room position, a random room is selected
by querying the room system with the requirements
specified in the previous step.

3) The floor is validated against a set of floor rules.
Each floor rule is encoded into a ScriptableObject
of type FloorRule and is injected into the algorithm
through the inspector. If any of the floor rules
are not respected, the floor is discarded and the
algorithm performs another attempt starting from
step 1. An example of a floor rule is a rule that
ensures the existence of a path between the elevator
room and each other special room through non-
optional rooms.

Both algorithms rely on the newly developed dynamic room
system for the second step. Relinquish already had a basic
room system, but we extended it to allow the procedural
generation algorithms to select rooms from an internal room
database by using simple queries.

4.1. Dynamic Room System

Floors in Relinquish used to be hand-crafted by the level
designers by nesting the room prefabs inside of a floor
prefab. This meant that the designers were the ones making
sure that the rooms were properly connected and that the

floors respected the requirements. In order to enable the
procedural content generation algorithms to select rooms
with desirable properties, we extended the previous room
system by implementing a room database that can be queried
to retrieve a list of rooms with the desired features. The
code for the dynamic room system is mainly stored in
RoomListUtility.cs. The list of rooms is saved as a table
in Assets/Resources/rooms.txt and it is updated every time
a room prefab is created, renamed, edited or deleted. Each
line represents a room. Each column represents one of the
following parameters:

1) Path: the path of the room prefab in the
file system (All rooms are placed in ”As-
sets/Resources/Rooms/” and its sub-folders).

2) Door Configuration Regex: the regular expression
that encodes all of the possible configurations of
the doors. For more information, refer to the Door
System subsection.

3) Type: the type of the room (Common, boss, eleva-
tor, treasure or fairy).

4) Is Optional: if a room is flagged as optional,
it means that there might be circumstances that
prevent the player from crossing it. For example,
a room with pits cannot be traversed without a
specific perk and this might lead the player to get
stuck on a non-compleatable floor. The procedu-
ral generation algorithms need this information to
generate valid floors.

The room system can be queried with the following two
utility methods:

1) GetRoomTemplateInfos (requirements): returns
the list of all the rooms in the database that satisfy
the given requirements.

2) GetRandomRoom (requirements): returns a ran-
dom room from the list of all the rooms in the
database that satisfy the given requirements.

The requirements are defined by a struct (RoomTem-
plateRequirement) with 4 different fields. A field is con-
sidered by the above mentioned methods only if a value is
assigned to it. The four fields are:

1) ignoreTheseRoomPaths: a set of strings contain-
ing the paths of rooms that should not be selected
(e.g.: to avoid duplicate rooms on the same floor).

2) doorConfig: the string that encodes the required
configuration of the doors. For more information,
refer to the Door System subsection.

3) type: the type of the room
4) onlyNonOptional: if true, filter out optional rooms.

4.1.1. Door System. This section will clarify what is meant
by ”door” and how doors are handled by the room system.
In Relinquish, a door defines whether a room is supposed to
be connected to another room along a direction (open door)
or not (closed door). Every room has 4 doors, one for each
cardinal direction. In each room prefab, each door can be
in one of the following states:

3



1) Always Open: the room always needs to be con-
nected to another room through the door.

2) Always Closed: the room cannot be connected to
another room through the door (there is always a
wall).

3) Optional: the door can either be open or closed,
depending on the requirements defined by the pro-
cedural generation algorithm. If a room with an
optional door is selected by the PCG algorithm,
the door state is set to open or closed accordingly.
This allowed us to increase the expressivity of
the generators without the need to create multiple
versions of the same room for every possible door
configuration.

For each room, the possible configurations of the doors
are encoded into the room list as a regular expression with
a length of 4 characters. Each character represents a door
state: ’o’ stands for always open, ’x’ stands for always
closed, and ’.’ stands for optional. Each character index
represents a cardinal direction: north (0), east (1), south (2),
and west (3). See Figure 4 for an example.

Figure 4. Example of a room prefab and its door configuration regex. The
east door is always closed. The north, south, and west doors are optional.
Therefor, the door configuration regex is ”.x..”.

When querying the room system, the rooms whose non-
optional doors match the required configuration of the doors
are returned. The possible configurations of the doors of a
room are encoded with a regular expression because the
problem of finding rooms whose possible configurations
match the given door’s configuration can be translated into
the problem of finding the rooms whose regular expressions
match the string that encodes the required door’s configu-
ration. The special character ’.’ was strategically chosen to
represent optional doors because it matches any single char-
acter. A visual summary of the door system and examples
of regex matching can be seen in Fig. 5.

Figure 5. Visual summary of the door system. Given a string representing
the required door configuration, the rooms whose regular expression don’t
match the input string are filtered out.

4.2. Random Walks Algorithm

Our main PCG approach for generating the floor plan
of a level uses an agent-based approach. It is implemented
in AgentBased1FloorGenerator.cs. There are two phases of
floor plan positions generation. During the first phase, all
of the positions for the common rooms are decided. This
is done by having an agent do two-dimensional random
walks as described by Brian Bucklew [8]. This means that
an agent starts at a specific location and then steps in a
random direction each cycle. However, in order to determine
if a potential room is in a valid position from the random
walk, we use a rule-based system to validate positions.
If the agent fails to decide a position for a room after a
set amount of attempts, they will be transferred to another
random room position and try again. However, if this fails
another set amount of times then the algorithm will give up
and try again from scratch. This is done in order to not get
stuck in a situation where there are no possible positions
where a room can be placed. The agent will keep finding
positions until they have decided positions for the number of
rooms specified by the designer. After the agent has decided
positions for all the rooms, the next phase of the algorithm
starts. During this phase, the positions of the special rooms
are decided. The position for a special room is decided by
setting one of the positions of a common room to be the
position of the special room instead. The method to figure
out the position of a special room is done in two steps.

1) First, each room position is validated to check if
it could potentially be the position for the special
room. This is done using the same rule system
as for the common room positions, but using a
different rule set specific for this special room.

2) After finding all of the potential rooms positions,
each position is given an evaluation score using an
evaluation system. The position with the highest
score is then chosen for the special room.

In case that the algorithm fails at finding a position for
a special room, it will start over from scratch again.

The algorithm also allows for having multiple agents
acting at the same time. This allows for the algorithm to

4



expand in multiple different directions at once in order to
increase the diversity of the resulting floor layout, therefor
increasing the expressivity of the generator. Furthermore,
the algorithm has a feature which allows the designer to set
a chance to force the algorithm to start with a ”big loop”
as the one seen in Fig. 3.

4.2.1. Room Rules. The rule-based system consists of a set
of room rules that a designer can choose to add to the floor-
generator. Each of these rules are then checked whenever
the agent tries to place a room using the random walk.
There exist rules for each type of room. This way a designer
can more easily control how each different type of room is
placed in the floor.

A room rule is a scriptable object of type RoomRule
which requires a single function: Validate. The validate
function has the responsibility of determining if the rule
is followed or not. It takes a position and a dictionary over
already decided positions for other rooms.

An example of a rule could be a rule that dictates that
there must not be more than e.g. 6 rooms in a 3x3 square
around the room. This rule would make it so there would
not be as many rooms clustered together.

4.2.2. Room Evaluations. The evaluations system, much
like the rule-based system, consists of a set of evaluations
that a designer can choose to add to the floor-generator. Each
of these evaluations are then run when the generator tries
to determine the position of the associated special room.

A room evaluation is a scriptable object of type
RoomEvaluation which requires a function: Evaluate. The
evaluate function has the responsibility of evaluating how
good a given position would be for the special room. It
takes a position, a dictionary over already decided positions
for other rooms, and a dictionary over connections. Further-
more, an evaluation also has a weight that designers can use
to tune the importance of the evaluation itself.

An example of an evaluation could be an evaluation
which uses the distance to the elevator room. This can
be used to place e.g. the boss room as far away from the
elevator room as possible.

4.3. Prim’s Maze Algorithm

Our secondary PCG approach for generating the plan of
a floor is implemented in PrimMazeFloorGenerator.cs. It is
based on a furtherly adapted version of the Prim’s Maze-
based [6] algorithm used for generating levels in Eldritch
[7]. The standard Prim’s Maze algorithm can be summarized
into the following three steps:

1) Start from a single visited cell.
2) Randomly open a path to any adjacent unvisited

cell.
3) Repeat until all cells are visited.

In Eldritch, the algorithm is slightly modified in the follow-
ing way:

1) The expansion is biased from the most recent room
position.

2) Walls are randomly knocked down to introduce
cycles.

Like the Random Walk approach, the Prim-based algorithm
consists of two phases: first all of the positions for the
common rooms are decided using the above mentioned
techniques. Then, after they are decided, some of the com-
mon rooms are replaced with special rooms using rules and
evaluations in the same way as the Random Walk Algorithm.

4.4. Tests with Players and Designers

To test the reliability and believability of our procedural
generation solution, we planned supervised tests with play-
ers. We prepared 3 different builds and equally assigned
them to testers:

1) Version A: No procedural generation (hand-crafted
levels from the previous prototype).

2) Version B: Random Walk algorithm.
3) Version C: Prim’s Maze-based algorithm.

During the playtests, we recorded the qualitative feedback
to the game. We mostly focused on aspects related to the
layout of the floors, the rooms, and the placement of the
enemies. At the end of tests, the players were asked to
answer questions from GEQ (See section: Game Experience
Questionnaire (GEQ)).

To test the controllability of our algorithms, we also
planned tests with the original designers of the game. Specif-
ically, we were interested to see whether they could easily
achieve the results they wanted by tweaking the parameters
that are exposed in the Unity inspector. We were also very
interested to see if they appreciated the possibility to add
and remove room rules, room evaluation, and floor rules
directly in the inspector without the need to know how to
code. Lastly, we wanted to hear more about their needs in
order to identify possible extensions to our solution.

We considered to evaluate the expressive range [4] of
the generators, but we decided not to do it for the following
reasons:

1) We did not know how to properly determine rele-
vant metrics for describing floors

2) We lacked time to implement the actual code to
analyze the expressive range.

Lastly, we are interested to see whether the algorithms
we implemented manage to generate a new floor within the
expected time (the duration of the animation of using the
elevator to move to the next floor).

4.5. Game Experience Questionnaire (GEQ)

The Game Experience Questionnaire (GEQ) [5], [9]
is a questionnaire for evaluating the gaming experiences
of players. GEQ is a 5-point scale and consists of three
different modules, including the core module, the social

5



presence module, and the post-game module. The core
module assesses players’ game experience in seven dimen-
sions: Competence, Sensory and imaginative immersion,
Flow, Tension/ annoyance, Challenge, Negative affect, and
Positive affect. The social presence module tends to look
into psychological and behavioral involvement with other
social entities: in-game characters, other players online, or
co-located. The post-game module evaluates how players
felt when they stopped playing. For the current study, we
applied only the core module of the GEQ, which contains
33 questions. Besides the core module, we decided to add
six extra questions regarding the game map of Relinquish.
The questions are the following:

1) The game maps are repetitive
2) The length of each level is just right for me
3) The map length of each level is unbearable
4) I keep repeating the same path while playing
5) The game maps contain a high variety
6) In general, I think the game maps are nice and

interesting

Question 1, 3, and 4 are reversed questions. Therefore
the answer have been reversed when encoding. At the begin-
ning of the questionnaire, players were asked which version
they played.

5. Results

5.1. Game Experience Questionnaire (GEQ) results

We distributed GEQ to 19 playtesters and gathered their
feedback. All players were tested on the core module. On top
of the seven dimensions of the GEQ, we decided to add an
extra ”map” dimension, which allowed users to evaluate the
map layout of Relinquish (for more details, see Methods).
We compared the eight dimensions across the three game
versions. The results are shown in Fig. 6.

We found that human-designed levels (version A)
yielded stable and in general high score. It also got the best
scores in the sensory and challenge dimensions. The ran-
dom walks algorithm (version B), on the contrary, yielded
inconsistent and in counter-intuitive results. It scored the
best on flow, tension/ annoyance, meanwhile the highest in
negative affect dimension. However, the ”flow” experience
refers to the positive mental state in which one is fully
immersed in the activity one performs, related to a feeling
of focus, pleasure, and full involvement [10]. The Prim’s
maze algorithm (version C) yielded scores in low challenge,
flow, tension, and negative aspects. Further, Prim’s maze
algorithm yielded the worst results in six among all eight
dimensions.

5.2. Qualitative Feedback from Playtesters

In general, players did not express strong feelings re-
garding the floor layout. Some testers with version A (hand-
crafted floors) assumed that the floors were procedurally

Figure 6. This graph illustrates comparisons among the three game ver-
sions and eight evaluating dimensions. Version A: human-designed levels;
version B: random walk algorithm; version C: Prism’s Maze algorithm

generated while some people with version B and C said that
the floor layouts looked believable. In general, it appears
that the layout of the floor does not affect the gameplay
experience too much. Some people with version C (the Maze
algorithm) complained about how compact the floor layout
is by saying that it is harder to read on the map, it’s harder
to navigate, and it’s less interesting. In general, people
complained about backtracking and showed appreciation for
maps with loops and many small branches. There were a lot
of negative comments about the lack of variety in the content
of the game: there are only 3 types of enemies and identical
rooms were often spawned multiple times on the same floor.
Players usually noticed that enemies were spawned in fixed
positions and some would have preferred a more dynamic
system. Players noticed that, unlike version A, in version
B and C the boss rooms are not introduced by a corridor.
We did not notice that this aspect of the floor design was
a requirement and therefor we did not consider it while
designing the PCG algorithms. Players with version B and
C noticed that the special rooms were placed in terminal
positions and appreciated the choice by saying that their
placement looked natural. The multi-agent random walk
algorithm (version B) is the one that received more praise
both in terms of quality and believability.

5.3. Qualitative feedback from designers

The designers expressed that they were generally sat-
isfied with the layout of the floor generated by the ’Ran-
dom Walks Algorithm’. Furthermore, they appreciated the
possibility to be able to tweak parameters in the inspector.
However, they would like to be able to tweak the behavior
of the agent itself. E.g. being able to give the agent a higher
bias for making turns instead of going straight. They also
mentioned that they would like to be able to set animation
curves, based on carried weight, for the parameters instead
of static values.

The designers found the Rule and Evaluation systems
to be intuitive and appreciated the ability to drag and drop
them without the need to code. However, they would like
to have more agency over which specific rooms are placed
next to other specific rooms. E.g. having a boss room always
be anticipated by a corridor.

For the Room System, they appreciated the automatic
update of the room database by simply adding or editing
the room prefabs. They would, however, like to be able to

6



specify a weight to be used when selecting a random room
in order to make specific rooms rarer than others.

Lastly, they also commented on the lack of a check to
prevent the same room from being used multiple times on
the same floor. This, however, is caused by the algorithm
not properly utilizing the functionality of the room system
since there are not enough different rooms created by the
designers yet.

6. Discussion

The insights from the tests with the players and the
designers provided us a lot of feedback to better choose
the best candidate among the two proposed PCG solutions
and to design future extensions.
However, after analysing the results of the tests, we noticed
that there were inconsistencies between the questionnaire
and the qualitative feedback provided by the play testers.
We assumed that the lack of data could be the main reason
for the inconsistencies. Besides that, one previous research
which reviewed 73 publications about GEQ, suggests that
the reliability (Cronbach’s alpha) of different dimensions
within GEQ contain high variations [11], making it is dif-
ficult to determine which scores are robust. Therefore, we
decided to focus more on the qualitative feedback rather
than the questionnaire.

The comments about the believability of the floor layouts
did not change much from version to version. Some players
with Version A assumed the content was procedurally gen-
erated even if it was not. The same situation happened to
Version B and Version C as well. We thus conclude that the
believability of the floors is not particularly worse in Version
B and C, compared to Version A. This could indicate that
our algorithms improve the replayability factor of the game
without compromising the quality of the floors too much.
We are satisfied by the speed of both algorithms. They
both generate a new floor within the natural duration of
the elevator animation.

The Random Walk approach has been particularly ap-
preciated by the testers for its more frequent loops and
small branches which made the map more interesting while
reducing the amount of backtracking. The Prim’s Maze-
based algorithm has a tendency to generate overly compact
maps with too many walls between the rooms, which could
make the navigation of the floor uncomfortable for the
player. The initial idea behind the approach was that maze-
like structures would have been perceived as interesting
for their branching factor, but the playtests confuted the
hypothesis. Initially, we considered to keep both algorithms
and to randomly choose between them at run-time, but since
Random Walk has been appreciated much more than Prim’s,
we decided to move forward with the former approach over
the latter.

The feedback provided by the game designers inspired
possible future aspects of our PCG solution:

1) The ability to have more control over the behaviour
of the agents by exposing more parameters (e.g. the
probability of turning during a random walk).

2) The expressivity of the generator could be improved
by dynamically adjusting the parameters with an
animation curve based on player progression (e.g.
amount of dropped perks).

3) The believability of the algorithm would improve
by implementing the check for duplicate rooms.

4) Each hard-coded generation step could be converted
into an injectable step encoded by a ScriptableOb-
ject. This would make it more modular, more
designer-friendly, and more extensible (similar so-
lution to the rules and evaluations).

The room system could also be upgraded by:

1) Introducing a weight to each room to specify its
rarity.

2) Developing a dynamic enemy spawning system.

Having a dynamic enemy spawning system would improve
the expressivity of the generator, but would not fix one of
the main design problems of Relinquish: the lack of content.
In order to address this issue, more enemies, and rooms need
to be created in collaboration with the designers.

References

[1] J. H. Eiholt, A. C. Elsberg, J. S. Faber, F. Frassineti, and M. Wahlers,
“Unlike roguelike: Inverting traditional progression systems in the
context of the rogue-like genre.,” 2020.

[2] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content gener-
ation in games. Springer, 2016.

[3] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
vol. 9, no. 1, pp. 1–22, 2013.

[4] G. Smith and J. Whitehead, “Analyzing the expressive range of a
level generator,” in Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, pp. 1–7, 2010.

[5] K. Poels, Y. A. de Kort, and W. A. IJsselsteijn, “D3. 3: Game
experience questionnaire: development of a self-report measure to
assess the psychological impact of digital games,” 2007.

[6] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401,
1957.

[7] D. Pittman, “Level design in a day: Procedural level
design in eldritch.” https://www.gdcvault.com/play/1022110/
Level-Design-in-a-Day. Accessed: 2020-12-12.

[8] T. X. Short and T. Adams, Procedural Generation in Game Design.
USA: A. K. Peters, Ltd., 1st ed., 2017.

[9] W. A. IJsselsteijn, Y. A. de Kort, and K. Poels, “The game experience
questionnaire,” Eindhoven: Technische Universiteit Eindhoven, pp. 3–
9, 2013.

[10] M. Csikszentmihalyi, “Beyond boredom and anxiety: The experience
of play in work and leisure,” 1975.

[11] E. L.-C. Law, F. Brühlmann, and E. D. Mekler, “Systematic re-
view and validation of the game experience questionnaire (geq)-
implications for citation and reporting practice,” in Proceedings of
the 2018 Annual Symposium on Computer-Human Interaction in Play,
pp. 257–270, 2018.

7

https://www.gdcvault.com/play/1022110/Level-Design-in-a-Day
https://www.gdcvault.com/play/1022110/Level-Design-in-a-Day

	Introduction
	Background
	Procedural Content Generation
	Anatomy of PCG
	Evaluation of PCG
	Expressive Range (top-down)
	Self-report and questionnaire (bottom-up)


	Game Mechanics
	Overview of the Game - Relinquish
	Layout of the Floors

	Methods
	Dynamic Room System
	Door System

	Random Walks Algorithm
	Room Rules
	Room Evaluations

	Prim's Maze Algorithm
	Tests with Players and Designers
	Game Experience Questionnaire (GEQ)

	Results
	Game Experience Questionnaire (GEQ) results
	Qualitative Feedback from Playtesters
	Qualitative feedback from designers

	Discussion
	References

